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Phase Transitions in Diluted Magnets: 
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Transition metal halides provide realizations of Ising, XY, and Heisenberg 
antiferromagnets in one, two, and three dimensions. The interactions, which are 
of short range, are generally well understood. By dilution with nonmagnetic 
species such as Zn + + or Mg + + one is able to prepare site-random alloys which 
correspond to random systems of particular interest in statistical mechanics. By 
mixing two magnetic ions such as Fe + + and Co + + one can produce magnetic 
crystals with competing interactions--either in the form of competing anisotro- 
pies or competing ferromagnetic and antiferromagnetic interactions. In this 
paper the results of a series of neutron scattering experiments on these systems 
carried out at Brookhaven over the past several years are briefly reviewed. First 
the critical behavior in Rb2Mno.5Nio.sF4 and FecZn I_cF2 which correspond to 
two-dimensional and three-dimensional random Ising systems, respectively, are 
discussed. Percolation phenomena have been studied in Rb2MncMg j oF4, 
Rb2CocMgl_cF4, KMncZl_cF3,  and Mn~Znj_cF 2 which correspond to two- 
and three-dimensional Heisenberg and Ising models, respectively. In these cases 
c is chosen to be in the neighborhood of the nearest-neighbor percolation 
concentration. Application of a uniform field to the above systems generates a 
random staggered magnetic field; this has facilitated a systematic study of the 
random field problem. As we shall discuss in detail, a variety of novel, unex- 
pected phenomena have been observed. 
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1. INTRODUCTION 

It has been recognized in the past few years that quenched randomness 
may cause a fundamental change in the phase transition behavior of solid 
state systems. For small randomness in the interactions the effects are quite 
subtle; however, if impurities generate even quite small random fields then 
the phase transition is destroyed in both two and three dimensions. For 
systems with large randomness, especially with competing interactions, 
entirely new phenomena may occur. These include percolation effects, spin 
glass, and reentrant spin glass behavior. 

In studies of critical phenomena in pure systems, experiments on 
"model" compounds have played an essential role. It is not surprising 
therefore, that experiments on simple systems with well-characterized, eas- 
ily controllable randomness are playing an important role in elucidating 
critical phenomena in the presence of quenched randomness. The fluorides 
and chlorides of the three-dimensional (3D) transition metals turn out to be 
ideal systems in which to study the properties of disordered systems. 
Transition metal ions such as Mn ++, Co ++ , Fe ++, and Mg § are 
chemically very similar but magnetically very different. Consequently, it is 
possible to grow single crystals in which the magnetically very different ions 
are distributed at random over the transition metal sites so that the systems 
are chemically quite uniform but magnetically very different. Fortunately it 
has also turned out, for the fluorides at least, that it is possible to grow 
single-crystal alloys which are of very high quality crystallographically. This 
greatly facilitates optical, transport, and especially, scattering measure- 
ments. 

We have carried out a series of neutron scattering experiments on 
mixed magnetic crystals over the past several years. In this paper we review 
the salient results of these measurements. Emphasis will be on our studies 
of diluted magnetic insulators such as Rb2Co~Mgl_cF 4. In these crystals 
one can address the issues of random exchange critical behavior, percola- 
tion, and random field effects. We should emphasize that in this paper we 
intend primarily to review the results of experiments by the authors and 
their collaborators at Brookhaven; no attempt is made to survey compre- 
hensively the entire field. 

The general phase diagram together with random exchange critical 
behavior are discussed in Section 2. Percolation phenomena are presented 
in Section 3. In Section 4 we review experiments to date on the random 
field problem. 

2. RANDOM ISlNG CRITICAL BEHAVIOR 

The phase diagram for diluted two-dimensional (2D) square lattice 
antiferromagnets with nearest-neighbor (nn) interactions (~) is shown sche- 
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Fig. 1. Schematic phase diagram of a diluted 2D square-lattice antiferromagnet with nearest- 
neighbor interactions. The Heisenberg system is assumed to have an infinitessimal 3D 
interaction in order to produce a phase transition to conventional long-range order. The "real" 
curve corresponds to a 2D Heisenberg model with about 1% dipolar Ising anisotropy. Figure 
from Ref. 6. 

matically in Fig. 1. In the pure system, c = 1, one expects an ordinary 2D 
phase transition. This has, for example, been well explored in the systems 
K2CoF 4 and Rb2CoF4, which are realizations of the 2D Ising model (2) 
Remarkably  good agreement is found with Onsager's exact results. There is 
also a large variety of materials such as K2NiF 4 and RbzMnF 4 which have 
predominantly Heisenberg interactions but with a small Ising anistropy. 
Gratifyingly, these also show 2D Ising critical behavior. (3) These systems 
may be readily diluted with the nonmagnetic isomorphs K2MgF 4 or 
Rb2MgF 4. With increasing dilution T C decreases rapidly until for c = cp = 
0.594 the phase transition vanishes; c_ is the site percolation concentration 
for the nn square lattice problem. (~) The explicit shape of the phase 
boundary near cp depends both on the percolation crossover exponent 
and on the temperature variable relevant to the system H a m i l t o n i a n - - T  for 
models with continuous symmetry and e -2J /k r  for Ising models. 

For cp < c < l one expects to observe random exchange critical behav- 
ior; in this section we concentrate on this aspect of the problem. The first 
experiments on random Ising critical behavior were not carried out on a 
diluted system but rather in the mixed alloy Rb2Mn0.sNi0.sF4. (3~ In that 
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system the Hamiltonian may be written 

~,a = s JijSi. Sj -.l- 2 gilzB s / s i Z  ( l )  
< ij) i 

i,jNN 

with J M n  Mn = 7.4 K, J M n  Ni - - ' ~  25.7 K ,  and JNi  Ni = 89 K; here S(Mn) 
= 5/2 and S(Ni)= 1. The mean reduced anisotropy field, which arises 
from a combination of crystal field and dipolar interactions, is 

h, = gil~BH ? .  ~,, JySj = 0.0071 (2) 
j~nn 

From neutron scattering experiments one can readily measure the correla- 
tion length and susceptibility above T u and the order parameter below T u .  

Results for the correlation lengths in the pure and mixed systems are shown 
in Fig. 2. As predicted by theory, all three show 2D Ising critical be- 
havior. Any possible logarithmic corrections (7) due to the randomness in 
Rb2Mn0.sNi0:sF 4 are too small to be observed. Similar agreement is found 
for the susceptibility and order parameter. 

More recently, Ikeda (s) has studied the critical behavior in 
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Fig. 2. Inverse correlation lengths for three 2D antiferromagnets together with the exact 
result for the 2D Ising model. Figure taken from Ref. 3. 
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Rb2CocMgl_cF 4. This system corresponds more closely to an idealized 
diluted 2D Ising model. He also finds the expected 2D Ising behav- 
i o r - a g a i n  without any logarithmic corrections being observable. We 
have recently confirmed and extended somewhat  Ikeda ' s  results in 
Rb2Co0.vMgo.3F 4 as part  of our general program on random field effects. O) 

Studies of random critical behavior in three dimensions have proven to 
be surprisingly difficult. Specifically, for a number  of years all 3D systems 
with large randomness seemed to show transitions with pronounced round- 
ing.(10) It  was impossible to determine with certainty whether the smearing 
was due to macroscopic concentration fluctuations or was intrinsic to the 
physics. Recently, however, this problem has been solved, primarily 
through an outstanding crystal growth effort at Santa Barbara. V. Jac- 
carino and co-workers have succeeded in growing high-quality crystals of 
FecZnl_cF 2 and other diluted transition metal fluorides which exhibit 
phase transitions which are sharp on the l 0  -3  level. This turns out to be 
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Fig. 3. Inverse correlation length and inverse staggered susceptibility in Feo.sZno.sF 2 above 
and below T N = 42.50 K. The solid lines are the results of fits to single power laws. Figure 
taken form Ref. I 1. 
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sufficient to observe differences be tween pure  and  r a n d o m  Ising cri t ical  
behavior.(11) 

As  is by  now well known,  for 3D n-vector  models ,  only  the Ising mode l  
which has  c~ > 0 is expected  to exhibi t  new cri t ical  behav io r  due to 
r a ndomness  in the exchange.  (7) The  crossover  exponen t  for the evolut ion  
f rom pure  to r a n d o m  cri t ical  behav ior  is a ~  1 /9 ;  thus it was ini t ial ly 
expected  that  the r a n d o m  cri t ical  behav io r  would  be  unobservable .  How-  
ever, for large r andomness  with ( A J / J ) ~ I / 2  one has  ( A J / J ) l / ~ ' ~ 2  ;4 
10 .3  and  the p re fac to r  is unknown;  thus the r a n d o m  Ising fixed p o i n t  
could  be accessible  if the r andomness  were maximal .  

A de ta i led  s tudy of the cri t ical  behav ior  in FecZn  ~ _oF2 with c = 0.6 
and  c = 0.5 has  been  carr ied out  using bo th  b i ref r ingence  and neut ron  
scat ter ing techniques.  (~1) F e F  a has  been  shown to exhibi t  3D Ising cri t ical  

behavior .  The  mos t  d r ama t i c  effect is observed  in the t empera tu re  der iva-  
tive of the b i ref r ingence  which is p ropor t iona l  to the hea t  capaci ty .  The  
measurements  show a crossover  f rom divergent  behav io r  with ~ = 0.11 in 

pure  F e F  2 to a cusp with o~ = - 0 . 0 9  + 0.03 in Fe0.6Zno.4F 2. Resul ts  for the 
corre la t ion  length and  suscept ibi l i ty  in Fe0,sZno.sF 2 above  and  be low T N 
are shown in Fig.  3. F i rs t  it is found  that  ~, = ~,' a n d  v -- v' to within the 
errors. Second,  as shown in Tab le  I, the results differ  cons iderab ly  f rom 
those of the pure  3D Ising mode l  especial ly for the cri t ical  ampl i tudes .  The  

Table I. Exponents and Amplitude Ratios for Pure and 
Random d = 3 Ising Models 

i 

Pure Ising Random [sing 

Theory ~ FeF2 b Theory c Fe0.sZn0.sF2 d 

Susceptibility 
~, 1.24 1.38 • 0.08 1 39 1.44 • 0.06 

Amplitude ratio 5.1 6.1 • 1.0 1.7 2 .'2 • 0.1 

Correlation length 
v 0.63 0.67 • 0.04 0.70 0.73 + 0.03 

Amplitude ratio 0 53 0.43 +_ 0.07 0.83 0.73 • 0.04 

Specific heat 
c~ 0.11 0.11 • 0.00 - 0.09 - 0.09 *- 0.03 

Amplitude ratio 0.51 0.54 • 0.02 - 0.5 1.6 • 0.3 

aL. C. Guillou and J. Zinn-Justin, Phys. Rev. B 21:3976 (1980). 
bM. T. Hutchings, M. P. Schulhof, and H. J. Guggenheim, Phys. Rev. B 5:154 (1972); 
G. Ahlers, A. Kornblit, and M. B. Salamon, ibid, 9:3932 (1974). 
CReference 7 and A. Newlove (private communication). 
dReferenee 11. 
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exponents, however, are in good agreement with recent estimates for those 
characterizing the 3D random Ising fixed point. (7l We conclude, therefore, 
that 3D random Ising critical behavior is indeed observable and that recent 
theory provides reasonable values for the actual exponents. Much better 
experiments will be required to observe deviations from pure system 
behavior for the 2D Ising model. 

3. P E R C O L A T I O N  

The essential features of the percolation problem may be seen from 
Fig. 4. This figure shows a square lattice with 50% of the sites occupied and 
with only nearest-neighbor atoms connected by bonds. It is evident that for 
c = 0.50 the spins form only finite clusters; in addition, the clusters them- 
selves are highly ramified with many one-dimensional links in the paths 
between distant atoms on the cluster. If the atoms are decorated with spins 
with nearest-neighb0r exchange interactions, then it is evident that there 
can be no true phase transition; rather, as T--~ 0 the correlation length will 
grow to the size of the large clusters and then saturate. 

2D SQUARE LATTICE, NN BONDS 
SITE OCCUPATION PROB., C=O.50 

. 

Fig. 4. Computer simulation of a 2D random nn square lattice site percolation network with 
c = 0.50. Only nearest-neighbor bonds are connected. Figure from Ref. 6. 
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As the concentration is increased the mean size of the clusters, ~c, 
grows until for e---)ep, the percolation concentration, (c diverges and an 
infinite network is formed. As illustrated in Fig. 1 only for c --) c e can there 
be a phase transition at T > 0. The behavior around the point (c = cp, 
T = 0) has now been extensively discussed in the literature. (5'6) Briefly, this 
point may be regarded as a muIticritical point exhibiting geometrical 
critical behavior along the T = 0 axis and thermal critical behavior at c = cp 
along the temperature axis. The critical exponents are related by the 
crossover exponent q) so that, with an obvious notation, "/r = Ye/q ), ~r 
= ~p/O, etc. The geometrical critical exponents ye,p~ are known quite 
accurately from various theoretical calculations. (4) The phase boundary for 
the infinite network for c > cp is given by I~(T~)~(c - cp) ~, where/x(T)  is 
the appropriate temperature scaling field for the spin system Hamiltonian. 
As noted previously for Ising models /L(T)---2e -2J/kT, while for systems 
with continuous symmetry ~ ( T ) ~  T. 

A series of neutron scattering experiments have now been performed 
in varied one-, two-, and three-dimensional magnets, mapping out the basic 
behavior around the percolation concentration. As we shall discuss below, 
these should be regarded as first generation experiments. No attempt was 
made to explore the subtle line-shape effects which have been the subject of 
recent theoretical study. (12) We now review the results of these measure- 
ments. 

3.1. One-Dimensional Magnets 

The percolation problem in one dimension is essentially trivial; the 
percolation concentrat ion in one dimension is, of course, cp = 1 since a 
single vacancy breaks the chain. The 1D problem, however, turns out to 
provide useful guidance for the more complicated 2D and 3D systems. For 
classical unit length spins in 1D one has, as an exact result, (131 the structure 
factor 

K(Ac,  O) + K(O, I~) O[(Ac)2, /~2] (3) 
S ( A c , / ~ , Q )  [K(Ac, 0) + K(0, /~)]2 + Q2 + 

where K(Ac,  O) = 1 - c and K(0,/z) = /z  = KIID(T). Thus, in 1D the cross- 
over exponent 0 = 1. 

Experiments have been performed at Brookhaven on the 1D near- 
Heisenberg magnet (CD3)4NMncCul_cC13. (14) The Cu-Cu  and Cu -Mn  
interactions are much weaker than the M n - M n  interactions so that for 
k B T ~ IJCu_MnSCuSMn] this should simulate the percolation system of inter- 
est here. Results for the inverse correlation length K for two samples with 
c = 0.85 __ 0.02 and 0.93 +_ 0.02 by Endoh eta/. (14) are shown in Fig. 5. The 
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Fig. 5. Inverse correlation length versus temperature in (CD3)4N(MncCu 1_c)C13. The dashed 
lines correspond to the percolation limit with JM~-cu = 0. The solid lines correspond to the full 
theory. Figure from Ref. 14, Endoh et  al. 

dashed line represents the results of Eq. (3) with JCu-Mn set equal to zero 
and with no adjustment parameters. It is evident that the agreement is quite 
good, especially for the higher concentration sample provided c is taken as 
0.94, which is well within the errors. The departure of the data from the 
percolation curve for T < 8 K is due to the C u - M n  coupling; the solid 
lines are calculated from a theory similar to that given above but including 
the C u - M n  interaction. ~ 13) 

3.2. Two-Dimensional Magnets 

The first experiments in 2D were in the system Rb2MncMg I cF4 .(6) 

This is a 2D square lattice with predominantly nearest-neighbor interac- 
tions. The spin Hamiltonian for the Mn + + may be written 

~f~ = ~ JnnSi. Sj - gl~sHA ~ ( -- )'S;" (4) 
<nn> i 

with J.n--0.72 meV; the anisotropy field is about 1% of the exchange field. 
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Fig. 6. Critical-scattering scans across the ridge at (h, 0, 0.4) in Rb2Mno.54Mgo.46F 4 at several 
temperatures. The horizontal instrumental resolution is 0.01 lh, FWHM. The solid lines are the 
fitted 2D Lorentzians as discussed in the text. Figure from Ref. 6. 

This anisotropy term generates some difficulties in the analysis of the 
experiments; these are discussed in full in Ref. 6; we shall give a simplified 
discussion of the results here. A series of scans through the antiferro- 
magnetic  Bragg peak position in a sample with c -- 0.54 are shown in Fig. 
6. As we noted previously, for the 2D nn square lattice cp -- 0.594 so that 
this sample should be below the percolation threshold. The scattering 
profiles are well fitted by a simple Lorentzian profile as in 1D. The peak 
intensity grows and the width narrows as temperature is decreased. How- 
ever, at T - -  2 K the width is still much  larger than resolution, indicating 
that the correlation length has saturated at a finite value. 

The results for the inverse correlation lengths so obtained are shown in 
Fig. 7 together with results for samples with c = 0.57 and c = 0.60. The 
c = 0.60 sample exhibits a phase transition to long-range order at T ~ 8  K; 
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Fig. 7. Fitted inverse correlation lengths vs. temperature in RbzMncMg I cF4 for c = 0.54, 
0.57, and 0.60. The solid lines represent fits to the percolation multicritical theory as described 
in text. Figures from Ref. 6. 

these results are, of course, in accord with those expected for cp = 0.594. In 
order to analyze these data quantitatively, it was assumed (6) that the 1D 
result 

K(ac ,  ~) = K(Ac, 0) + X(0, ~) (5) 

holds in 2D as well. Further it was argued on heuristic grounds that 
t L = K ~ ( T )  where KIID(T)  is the inverse correlation length of a 1D chain 
described by the Hamiltonian Eq. (4); this then incorporates the Heisen- 
berg-Is ing crossover effects. Fits to this form are shown as the solid lines in 
Fig. 7. From such fits, one finds v T = 0.9 + 0.1 and YT = 1.5 _+ 0.15. These 
may be compared with the 2D percolation exponents vp = 1.33 and 
yp = 2.39; thus for RbzMncMg~_cFa the crossover exponent is 4' = 1.5 + 
0.15. This result was regarded as quite mysterious for a number  of years. 
However, recently Coniglio (~5) has succeeded in deriving values for the 
crossover exponents for systems with continuous symmetry. He has argued 
that this problem is closely related to the electrical resistance problem on 
percolating networks. Using available data for the electrical resistance 
behavior he deduces 0 = 1.43 for n-vector models in two dimensions. This 
agrees within the errors with our experimental value. 

An extensive set of experiments have also been performed on the 
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vs. the underlying one-dimensional correlation lengths. For the Mn compound KI(T ) is 
calculated in Ref. 6 while for the Co compound KI(T ) = ln(tanh ~e'/kT) with ~ f  = 42 K. 
Figure from Ref. 6. 

diluted 2D Ising system Rb2CocMgl_cF4 .(16) A number  of the features 
observed in Rb2MncMgl_cF 4 hold in the Ising system as well. First, the 
profiles are again well described by 2D Lorentzians. Second, the sample 
with c > 0.594 exhibits a transition to long-range order while those with 
c < 0.594 exhibit finite correlation lengths at T = 0. Third, the fitted inverse 
correlation lengths are well described as the sums of a geometrical plus a 
thermal part. Results for a sample with c = 0.575 are shown in Fig. 8 
together with those from a Mn sample with c = 0.57. The results are plotted 
versus the relevant one-dimensional correlation lengths. It is evident that 
for Rb2C%Mg~_cF 4, v r must be greater than unity and indeed from 
detailed fits Cowley et al. (~6) find v r = 1.32 _+ 0.04; they also find, with less 
certainty, Yr = 2.4 +_ 0.1. Using the values given above for the 2D percola- 
tion exponents, one deduces a crossover exponent q~ = 0.99 + 0.03. Wallace 
and Young (~7) have found as an exact result for Ising models in all 
dimensions ~ = 1. Thusl experiment and theory are in excellent accord. 
Finally we note that, recently, Stinchcombe (~8) has provided theoretical 
arguments for much of the phenomology deduced by us from the analysis 
of the neutron experiments. 
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3.3. Three-Dimensional Magnets 

Among the most informative experiments were those in the 
MncZnl _cF2.(~9) The Mn + + atoms in MnF 2 form a body-centered tetrago- 
nal structure with, at low temperatures, the corner Mn + + spins oriented 
along the C-axis antiparalM to the body-center spins. The exhange interac- 
tions, which are Heisenberg in character, are predominantly between the 
corner and body-center spins, although there are also weak interactions 
between other neighboring pairs. (2~ One must also take into account the 
dipolar coupling which results in a small Ising anisotropy term. Thus, one 
expects a Heisenberg to Ising crossover in the critical behavior. 

Cowley et  al. (19) employed a novel crystal of MncZn I _ cF 2 which had a 
concentration gradient along its length such that it passed through the 
percolation threshold cp = 0.245 about two-thirds down the crystal. Hence 
by masking off successive sections it was possible to scan c through cp. In 
addition, the geometry of MnF 2 is such that one can measure separately the 
longitudinal and transverse spin correlation functions, This enabled Cowley 
e t a / .  (19) to observe directly the Heisenberg to Ising crossover. Results for 

Mncp Znl-cp F 2 

1.0 

~ o . 5  

I I I I 

/ / 

, <  - -  u=0.86 

/, 
/ 

I 
5 IO 15 20 

TEMPERATURE (K) 

Fig. 9. Transverse (�9 and longitudinal (0)  inverse correlation lengths vs. temperature in 
MncpZn I 9F2. The solid lines are calculated using u = 0.86 (q, = 1) while the dashed lines use 
~, = 0.60 (~ = 1.4); the latter value was suggested by a model based on a self-avoiding walk 
approximation to the percolation cluster geometry (Stanley et al., Ref. 5). Figure taken from 
Ref. 19. 
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the inverse correlation lengths for KII (closed circles) and K• (open circles) 
are shown in Fig. 9. The solid and dashed lines are calculated assuming 
Kit,• = (Kl~ba-) ~T with v r = 0.86 and v r = 0.6, respectively. First, it is evident 
that the anisotropic behavior in the correlation lengths is very well de- 
scribed by using Kllfi• as the temperature scaling field. Second, the expo- 
nent v r = 0.86 is preferred although the actual value is not known very 
precisely. Results for a series of concentrations are shown in Fig. 10. The 
solid lines correspond to the form 

KII , .  = K C + (K lb •  ~176176 (6) 

In 3D, the percolation correlation length exponent is vp = 0.88 + 0.02. Thus 
the crossover exponent for MncZnl_cF2 is ~ = 1.04 +_ 0.t4. This may be 
compared with the exact result ~ - 1.0 for the Ising model and ~ = 1.12 for 
n-vector models. Thus the theories are consistent with experiment although 
the measurements are not precise enough to distinguish between the dis- 
crete and continuous symmetry values for the crossover experiment or a 
crossover between them. 

INVERSE CORRELATION LENGTH IN MncZnl_cF 2 
I I I I I I 

1.5t ~ 

o 5  . 

�9 + 0 o 0 4 .  +o:o4o I , 

j .  2; r o ,; 2o TEMPERATURE {K) 
Fig.  10. T h e  inverse  co r r e l a t i on  leng th  in M n c Z n l _ c F 2 .  N o t e  t ha t  in the interest  of c lar i ty  

0.2 has  been  a d d e d  to the results for  c = cp - 0.004,  0.4 to c = cp - 0.016, 0.6 to c = cp - 

0.028, a n d  0.8 to c = cp - 0.040.  The  solid lines a re  given b y  K = ( K  a + /iT), where  K r is 

g iven b y  the o n e - d i m e n s i o n a l  co r r e l a t ion  as K r a  = 0.95 ( K i D a )  T M  and ,  fo r  c < cp, K c a  = 

1.3(1 - c/ce)~ while  for  c = c e + 0.008, K c a  = - 0 . 0 5 ,  a is the d i s t ance  be tween  m a g n e t i c  

ions.  F igu re  f r o m  Ref.  19. 
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Detailed results have also been reported for KMncZn 1_cF3 .(19) This is 
a diluted cubic Heisenberg model with random dipolar anisotropy--a 
model of considerable current interest. A number of unusual phenomena 
were observed for c near c .  Unfortunately, the samples were not of high 
quality and it was not possible to ascertain unambiguously which effects 
were intrinsic and which were due, for example, to concentration gradients. 
The most interesting results were observed for a sample with c = 0.33, just 
above the percolation concentration cp = 0.303. This crystal exhibited a 
phase transition to long-range order at T~v~14 K. However, there was no 
peak in the critical scattering at T N and instead the diffuse scattering 
inverse correlation length, which was nonzero at T N, decreased gradually to 
zero as T ~ 0 .  In addition, the Bragg scattering reached a maximum at 
~ 5  K and then decreased with further decrease in temperature, dropping 
to a value of about 60% of its peak value. These results have still not been 
explained satisfactorily. One plausible model is that the diffuse scattering is 
dominated by the finite clusters while the critical scattering peak at T N is 
smeared out by concentration gradients. The diminution of the Bragg 
intensity would then signify reentrant spin glass behavior driven by a spin 
glass transition in the finite clusters. (21) We shall discuss this model in more 
detail in the context of EucSr 1 _c s in the next subsection. 

Finally, we comment that in all of these experiments in 1, 2, and 3D 
percolative samples, the scattering was Lorentzian in character. However, 
as discussed in detail by Aharony, (~2) at high temperatures the fractal 
character of the percolation clusters should reflect itself in the line shapes, 
and deviations from Ornstein-Zernike behavior in the spin-spin correla- 
tion function should occur. More  detailed experiments at high temperatures 
are required to test these ideas. 

3.4. More Distant Neighbor Interactions 

One of the most surprising aspects of all of the results which we have 
reviewed up to this point is that the experimental percolation threshold 
corresponds, to within the errors, with that calculated, assuming nearest- 
neighbor interactions alone. In each case, there are weak (typically 1% to 
2%) more distant neighbor exchange couplings as well as long-range dipolar 
interactions. Although it has not been explicitly proven, we assume that 
these longer-range interactions do not play a role primarily because of 
kinet ic  effects. Explicitly, the more distant neighbor couplings do not 
become comparable in energy with k T  until the isolated clusters are frozen. 
The time to reorient a cluster would then scale like e J~ which may be 
extremely large at the relevant temperatures. 
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Very interesting effects, however, may be observed if more distant 
neighbor interactions are some reasonable fraction of the nn coupling and 
if they are competing, that is, they prefer a different ground state. As 
demonstrated by Maletta and co-workers, (22) the system EucSr~_cS is a 
paradigm of such behavior. EuS is a face-centered cubic Heisenberg 
ferromagnet with Jnnn/Jnn = - 1 / 2 .  For the fcc lattice (4) cp(nn)= 0.195 
while ce(nn + nnn)= 0.135. The experimental phase diagram for the di- 
luted system is shown in Fig. 11. The salient feature is that the ferromagne- 
tism vanishes for c~0.51 rather than 0.195 or 0.135. Between 0.135 and 
0.51 a spin glass state occurs at low temperatures. This marked departure 
from ordinary percolation behavior is explicitly driven by the competition 
between the nn and nnn interactions. A second novel feature is that, for 
c-----0.51, the ferromagnetism vanishes at low temperatures and a reentrant 
spin glass is found. This is reminiscent of the behavior in KMncZnl_cF 3 
just above cp.(19) 

Detailed neutron scattering studies have now been carried out on the 
reentrant spin glass behavior in EucS q _~S. These experiments are discussed 
in detail in Ref. 22. A number of interesting new effects are observed. We 
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Fig. l l .  Experimental phase diagram in EuxSr 1 ~S; figure from Ref. 22. 
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remind the reader that in our percolation experiments the diffuse scattering 
was always Lorentzian in character. In the reentrant spin glass region it is 
found that significant deviations from Lorentzian behavior occur. Specifi- 
cally, q2.6 tails are observed. Aeppli et al. (19'21) have discussed these effects 
using a model involving random field coupling between the interpenetrat- 
ing ferromagnetic and spin glass networks. 

4. RANDOM FIELD EFFECTS 

In Section 2 it was shown that small randomness in the interaction has 
at most very subtle effects on the critical behavior. On the other hand 
random magnetic fields, that is site-random fields with mean value zero but 
finite variance, are expected to have quite drastic consequences. (23) Specifi- 
cally, a ferromagnet in 6 - e dimensions with random fields is expected to 
exhibit the critical behavior of the equivalent pure system in 4 - E dimen- 
sions. For systems with continuous symmetry this result is believed to hold 
down to physically accessible dimensions. This means that the lower critical 
dimensionality for the random field n-vector model with n >/2 is 4. Thus 
there should be no phase transition in such systems in three dimensions. 

The situation for the Ising model is, however, much more controver- 
sial. (24'25) The above d ~  d - 2 argument would give 3 as the lower critical 
dimensi0nality d l of the random field Ising model. Certain calculations 
support this result. (24) However, a variety of interface calculations, which 
are believed to be valid at low temperatures, as well as scaling arguments, 
yield d1= 2 for the random field Ising model. (25~ This would suggest that 
the 3D random field Ising model should exhibit a phase transition to 
long-range order (LRO) at some finite temperature. Although random 
fields are ubiquitous in Nature, initially it seemed quite difficult to carry 
out systematic experiments on the random field problem. However, Fish- 
man and Aharony (26) pointed out that if a uniform magnetic field is 
applied to a random Ising antiferromagnet then random staggered mag- 
netic fields would be generated. They further suggested that this system 
would be isomorphous to the idealized problem of a ferromagnet in a 
random field. As emphasized by Wong et ai.,(27) the random staggered field 
contains a temperature-independent contribution from the randomness in  
the moment and a temperature-dependent bond randomness term. There 
are also cross terms between these two effects. (28'29) The Fishman-Ahar0ny 
suggestion has made possible systematic experimental study of the random 
field Ising model, albeit in systems which combine random fields and 
random interactions. 

Before discussing individual experimental results, we first state the 
general situation as of the writing of this paper (September 1983). In all 3D 
anisotropic systems in which the samples were of high enough quality that 
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extinction effects could be observed and detailed line-shape analyses could 
be performed, the LRO was destroyed provided that the quasiordered state 
was approached from the disordered direction--either by cooling in the 
field or by fixing the temperature and lowering the field from the paramag- 
netic state. However, the length scale is quite large. For example in 
Feo.6Zno.4F 4 at H = 20 kG the correlation length in the quasiordered state is 
about 1000 lattice constants. (3~ This large length scale makes meaningful 
computer simulations very difficult. A second important feature of the 
random field problem is that there are remarkable hystereses and long time 
relaxation effects. (28'3~ First, even when cooled in a field, 3D systems 
typically do not respond to changes in the field for T < ~ O . 8 T  u .  Thus, the 
experiments do not access the low-temperature region where the theoretical 
calculations are expected to be valid (~5) or, more correctly, the theories m a y  
not be valid in the region where the physical state is established. Second, if 
the sample is cooled in zero field and a small applied field is switched on, 
then the LRO state remains stable; indeed the LRO is not destroyed until 
the sample is heated up to near the "quasiordering" temperature. (3~ 
Finally, we note that striking heat capacity effects are observed at small 
fields where the domain wall separation is very large. (33'34) We now review 
briefly the published neutron scattering results. 

To date neutron scattering experiments have been performed on 
Rb2Coo.vMgo.3F 4 (9) R b z M n 0 . s N i 0 . s F  4,(35) C o c Z n ~ _ c F 2  ,(28) 
MncZnl_cF2, (35,36) Fe~Zn~_cF2,(3~ Fe~Mg~_cC12, (32) Fe~Co~_cC12, (32) and 
Dy(Po.92V0.08)O4 .(37) Ful l  papers  have been pub l i shed  on the  
RbzCo0.vMgo.3F4, CocZnl_cF 2, and Mno.%Zno.82F2 neutron scattering ex- 
periments while some results on the other systems are available at the time 
of this writing either in brief preprints or in preliminary reports. The 
interpretation of these experiments is still evolving. Heat capacity and 
susceptibility data as a function of applied field are also available for most 
of the above systems. (33'34'38'39) 

An extensive set of experiments have been reported in the diluted 2D 
Ising antiferromagnet RbzCO0.TMg0.3F4 .(9) The essential features are illus- 
trated in Fig. 12 which shows scans through the (1,0,0) magnetic Bragg 
peak position as a function of decreasing temperature in an applied field of 
40 kG. The N6el temperature at H = 0 is T N = 42.5 K. The diffuse 
scattering narrows continuously down to about 20 K and then saturates for 
lower temperatures. The scattering at 5 K is significantly broader than the 
resolution of ~0.005 i t - l  half-width-at-half maximum (HWHM) indicat- 
ing that the LRO has been destroyed by the applied field. The profile 
evolves from a Lorentzian at 60 K to a function which can be approxi- 
mated by a Lorentzian raised to the 3 /2  power at 5 K. In fact, theory 
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Fig. 12. Quasielastic scattering in Rb2Coo.7Mgo3F4 for 40 kG at four different temperatures. 
Note that the horizontal and vertical axes change between the different temperatures: 

suggests as an appropriate form for the structure factor (24) 

j ( Q )  _ A + B (7) 
(x2 + q2)2 (x2 + q2) 

where q = Q - G. Further, it is argued in Ref. 9 that A ~ ( S Z ) ~ = 0  K 2  4-d for 
T < T N and small H. The solid lines in Fig. 12 represent the results of fits 
to Eq. (7); the dashed line shows the Lorentzian component .  

From a series of such experiments one can extract K vs. H at various 
temperatures. The results so obtained are shown in Fig. 13. In this 2 D  
system, the equilibration problems are much less severe (9) than those for 
the 3 D  systems to be discussed below. (2s,3~ In particular it was explicitly 
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Fig. 13. Logarithmic plot of the fitted inverse correlation length K in Rb2Co0.TMgo.3F 4 vs. 
magnetic field at a series of temperatures. The data at 20 K and 10 K are indistinguishable. 
Figure from Ref. 9. 

demonst ra ted  in Ref. 9 that all data  down to 30 K and for H >~ 45 kG 
down to 20 K, represent the t rue  equilibrium states. However,  at 10 K, 
Rb2Co0.TMgo.3F4 explicitly does not  respond to changes in the field and 
thus must  be considered frozen. It  is found  f rom the data  in Fig. 13 that the 
exponent  v H (T)  in 

K ~  H ~'( r) (8) 

increases gradually f rom 0.7 _+ 0.2 at T N to 1.6 + 0.2 at 20 K. The differ- 
ence between the 30 K and 20 K slopes is not  significant. F r o m  the scaling 
theories (251 near T N one has 

K (  T N ) ~ HI'~ 4 (9) 

while for T = 0, theory (23-25) gives for 2D in equilibrium 

4 = 3 (10a) 
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or  

K ~ e  - c / H ~ v ,  d t = 2 (10b) 

Presumably as the temperature is lowered below T N the exponent should 
increase continuously from a value of 1.14 to either 2 [Eq. (10a)] or m [Eq. 
(10b)]. 

The experiment appears to favor Eq. (10a) and therefore dl = 3 in that 
the low-temperature exponent t, H = 1 .6_  0.2 is reasonably close to the 
value 2. The discrepancy at T N, VH = 0.7 _+ 0.2 VS. 1.14 almost certainly 
originates from the fact that the experiments are not in the small-H limit so 
that higher-order terms are important.  Because of the irreversibility effects 
at low temperatures the above result is somewhat ambiguous. A theory 
which predicts the explicit evolution from T = T N to T = 0 is required to 
choose definitively between the dl = 2 and d t = 3 models. (4~ Finally, we 
note that the experiments give J ( G ) ~ K - 2 ~  in agreement with theory. (9'25) 
The experiments, of course, also show that the applied field and therefore 
the induced staggered random field destroy the long-range order. The 
destruction of the phase transition in RbC%Mgi_cF 4 also manifests itself 
in the heat capacity and susceptibility behavior. Ferreira eta/.  (39) have 
shown that the heat capacity for small H near T N follows quite well the 
form predicted by random field scaling theory. 

The situation in three dimensions is much more complex. Before 
discussing the neutron scattering experiments we first review the results of 
heat capacity experiments by the Santa Barbara group O3) ; the most precise 
experiments are in a crystal of Fe0.6Zn0.4F 2 which has a very sharp 
transition at H = 0. This is the same crystal which was used for the random 
Ising critical heat capacity experiment (11~ discussed in Section 2. First, it is 
found for fields up to 20 kG that the heat capacity peak remains sharp; 
further at both 14.1 and 20 kG, the peak is reasonably well described as a 
symmetric logarithmic divergence, that is, a = 0 over the reduced tempera- 
ture range 1 0 - 3 <  ] T / T  N - 11 < 10 -2.  Second, the heat capacity peak 
temperature follows the Fishman-Aharony (26) crossover form 

T~ = T N - b g  2 - c H  j/q" (11) 

with ~b = 1.40 + 0.05. According to the scaling theory, the crossover expo- 
nent ~, should equal y, the susceptibility exponent for the H -- 0 transition. 
As shown in Table I, the neutron experiments (1~) yield ~, = 1.44 + 0.06. 
This provides very strong evidence that the lowering of Tc is in fact due to 
the random field mechanism. It should be emphasized, however, that Eq. 
(11) should hold for a transition either to true LRO or into a quasiordered 
domain wall state. Belanger et  al. 03) have argued from the sharpness of the 
heat capacity peak that they are observing a true phase transition (presum- 
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ably to antiferromagnetic LRO) and further that the ~ = 0 result reflects 
2D Ising behavior. As we shall discuss below, in our view the actual 
situation is more complex, albeit also more interesting. Specifically, if the 
crystal is cooled in a field it evolves continuously into a domain wall 
state. (3m The sharp heat capacity peak then arises from the ordering 
process within the domain. 

Before discussing the neutron results we should also note that there are 
many other measurements of susceptibilities, heat capacity, etc. in diluted 
antiferromagnets in a field reported in the literature. (27'34'38) All of these 
experiments suggest broadened transitions at large H for field-cooled 
measurements and they have been interpreted as demonstrating the de- 
struction of the phase transition by the induced random fields. 

The first published 3D Ising random field neutron scattering experi- 
ments (28) were on the system CocZn~_cF 2 with c = 0.26 and 0.35. The 
results are similar to those in the 2D systems with two important differ- 
ences. First, as we shall discuss below, in 3D Ising systems the irreversibility 
effects are much more severe. Second, in Co0.35Zn0.65F 2 a novel "relief of 
extinction" effect is observed at low fields. We first discuss the general 
behavior. As in 2D, when the CocZn~_cF 2 samples are cooled in a field 
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Fig. 14. Scattering for wave-vector transfers along [l~'0] at 2.0 K from Co0.3sZn0.65F2. The 
solid lines are fits to Eq. (7) as described in the text. Figure from Ref. 28. 
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from above T~, the scattering profiles around the zero-field Bragg position 
evolve continuously from Lorentzian critical scattering at high tempera- 
tures to a Lorentzian-squared profile at low temperatures. We show in Fig. 
14 representative results for Co0.35Zno.65F 2, which has TN(H = 0 ) =  13.25 
K, at T = 2 K cooled in fields of 35 and 50 kG. Clearly, the line shapes, 
which are predominantly Lorentzian-squared in form; are much broader 
than resolution thence demonstrating that the random field has destroyed 
the LRO. Results of Hagen eta/. (28) for the temperature dependence of the 
inverse correlation length K as a function of temperature for a series of 
fields are shown in Fig. 15. These results are quite similar to those in 
Rb2Co0.TMg0.3F 4 shown in Fig. 13. Power law fits to the 2 K data yield 
p~ = 3.6 _+ 0.3 and J ( G ) ~ K - 3  to within the errors. We shall discuss the 
significance of the power 3.6 _+ 0.3 after reviewing the other experiments. 

One result in the Coo.35Zno.65F 2 experiment which was initially quite 
surprising was that at small fields the pseudo-Bragg peak intensity in- 

Fig. 15. 
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Inverse correlation length K deduced for Coo.35Zno.65F 2 as a function of temperature 

for various applied fields. Figure from Ref. 28. 
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creased with increasing field. (28) This is the exact opposite of what one 
would naively expect if the field destroyed the LRO. Comparison with 
nuclear peaks showed that only the magnetic peaks exhibited this effect. 
Hagen et aL(28) explain this anomalous increase by considering the effects 
of extinction. In zero field, the crystal is sufficiently perfect that the 
magnetic Bragg reflection is extinction limited, that is, only that part of the 
incident beam which satisfies the Bragg condition perfectly is reflected. 
When the sample is cooled in an applied field, the magnetic order within 
the mosaic blocks is broken up into domains by the random field effect, 
and as a consequence the effective Darwin width is increased so that a 
greater proportion of the incident beam is scattered. Once the inverse width 
of the domains becomes comparable to the resolution this effect disappears 
and the peak intensity decreases with further increase in field. Thus in 
perfect crystals, this effect allows one to see the destruction of LRO by the 
random fields on length scales much larger than the spectrometer resolution 
would normally allow. It should also be noted that even when the peaks are 
resolution-limited, which typically means that the domain wall separation is 
larger than ~500 lattice constants, one can see the appearance of Q -4 tails 
in the scattering profiles in Ising systems. Since the tail amplitude scales 
like K in three dimensions this enables one to connect continuously onto 
the region where K is directly measurable. 

Experiments have also been performed on MncZnl_cF2 with c = 
0.78 (36) and c = 0.65. (35) As discussed in Section 3, MnF 2 is a body- 
centered tetragonal antiferromagnet with Heisenberg exchange interactions 
and a small Ising anisotropy due to the dipolar interactions. (2~ Thus it 
should show 3D Ising random field behavior. Initial bulk experiments (33'34~ 
showed that T c was reduced by the applied field according to Eq. (11) with 

= 1.1 to 1.4, thence verifying the importance of the random field effects. 
Shapira et aL (34) and Ikeda eta/ .  (38) both showed that the transition was 
broadened at large fields and they interpreted this as the destruction of the 
phase transition by the random field. This interpretation has been criticized 
by Belanger et aL,(33) who suggest that the broadening instead may reflect 
the proximity of the bicritical point which is Heisenberg in character. In 
our view this criticism is inappropriate, since only randomly oriented ran- 
dom fields will destroy the phase transition in a 3D Heisenberg system; a 
uniaxial random field simply favors a LRO phase with the spins oriented 
perpendicular to the random field direction. This conclusion could be 
modified by off-diagonal coupling terms of the form S ~S • However, since 
Mn + + is an S-state ion, these effects will be totally negligible. 

Initially neutron experiments (36) on Mno.TsZno.22F 2 were interpreted as 
implying that the LRO was not destroyed by the random field at least on 
the length scale of 1200 lattice spacings. More recent experiments by the 
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authors together with the Santa Barbara group (35~ on Mn0.65Zn0.35F z were 
also initially interpreted by us (41) as implying LRO at low temperatures for 
all fields. More careful examination in the light of recent results in 
FecZn l_cF2 shows that this is not the case. First, in Mn0.78Zn0.22F2, Cowley 
and Buyers (36~ found that the scattering around Tc (47.0 to 48.0 K) for 
H = 40 kG was indicative of Lorentzian plus Lorentzian-squared behavior 
as found in Co~Znl_cF 2. However, for T <  47.0 K the profiles were 
resolution-limited, as also found in CocZn~_~F 2 at small fields. For the 
configuration used by Cowley and Buyers, (36) this implies K < 0.0017 ,~-1 
or ( -- K-1  > 350 lattice constants (there is an error by ~ r  in the pub- 
lished estimate of 1200 quoted above). From more recent data, it is possible 
to put these results on an absolute scale in H / J .  Specifically, a simple 
scaling as a function of concentration from the results in the Fe~Znl_~F 2 
series to be discussed below shows that for c = 0.78 and H - - 4 0  kG, the 
domain wall separation should indeed exceed 350 lattice constants. Thus 
the experiments cannot be interpreted as implying that Mn~Zn z_cF2 differs 
from the good Ising systems. This again illustrates the importance of 
appropriate consideration of the relevant length scales in these random 
field problems. The more recent experiments (35) on Mno.65Zn0.35F 2, which 
are not yet published, show each of (i) a pronounced rounding of the 
transition, (ii) the relief-of-extinction effect, and (iii) Lorentzian plus 
Lorentzian-squared profiles down to 7 K when the sample is cooled in a 
field. Again the length scales are quite large, albeit not qualitatively 
different from those found in Fe0.6Zno.4F 2. Thus the results in MncZn ~_CF2 
are similar to those in the good Ising systems and they exhibit the 
destruction of LRO in field-cooled samples by the random field. 

The most complete experiments have been performed on the system 
Fe~Znl_~F 2 discussed in Section 2. As noted previously, very high quality 
crystals have been grown at Santa Barbara ~33) with c = 0.35, 0.50, and 0.60. 
The data from the neutron scattering experiments using these samples are 
still being analyzed so that we cannot give a proper description of the 
measurements here. In general, however, the results are similar to those 
discussed above for Coo.3sZno.65F2, albeit rather more thorough. In all three 
crystals it has been shown that for all fields the field-cooled transition is 
into a Lorentzian-squared state; at small fields the length scale is quite 
large so that the effects of the random fields are seen through the relief of 
extinction and the Q-4  tails in the resolution-limited scattering profiles. 
Again, relaxation and irreversibility effects play a dominant role. Repro- 
ducible results down to ~0.8Tc are obtained if the state is approached 
from the disordered direction. However, if the state is approached from a 
more ordered direction, for example, by cooling below T N in zero field and 
then turning on the field, one only recovers the Lorentzian-squared state if 
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the sample is warmed to near T~. The fact that for intermediate tempera- 
tures the K characterizing the Lorentzian squared state decreases with 
decreasing H but remains fixed on the time scale of minutes to hours if H is 
then increased, suggests that the irreversibility effects originate in the 
difficulty in nucleating domain walls. Similar behavior has been seen in 
temperature cycling of commensurate-incommensurate transitions. (42) In 
FecZnl_cF 2 the state is completely frozen for T<~O,8T~. Thus all of the 
measurements must be regarded as reflecting the high-temperature behav- 
ior. The experiments may not probe the true low-temperature equilibrium 
state. However, since in nearly all physical realizations of random fields in 
Nature, the random fields are present at high temperatures, it is the 
field-cooled behavior which must be understood. 

In the Lorentzian-squared region in FecZnl_cF 2 the neutron experi- 
ments reveal that u~/= 2.1 _+ 0.1 and for the 35% sample at least, this power 
law holds for ( =  K -I varying from ~15 A to at least 1500 A; it is also 
found that J ( G ) ~ K  -3 as expected. As noted above, these power laws 
must be regarded as reflecting the high-temperature field cooled behavior 
since the state is frozen below ~0.8T~. This presumably accounts for the 
differences in the exponents in Co~Znl_cF 2 and F%Zn I_~F 2. As we noted 
previously, the length scales for Fe0.6Zn0.4F 2 for fields of 14.1 and 20 kG 
are about 2000 and I000 lattice constants, respectively. Thus, it is not 
surprising that Belanger et al. (33) observe sharp peaks in the heat capacity 
at the 10 -3 level. The crossover to old0 is, however, a surprising and 
important feature which, in our view, remains to be understood within the 
context of the overall behavior revealed by the neutron experiments. 
Interesting fluctuation effect are also found in the neutron experiments (3~ 
in this field-temperature range in Fe0.6Zn0.4F2; these data are still being 
analyzed so that we cannot present the final empirical picture here. 

It is clear, however, that in the view being presented in this paper, the 
heat capacity singularity must ultimately become rounded when the length 
scale for the fluctuations producing the heat capacity peak becomes compa- 
rable with the domain wall separation. High-precision data at high fields in 
Fe0.6Zn0.4F 2 are not yet available. However, Shapira et al. (34) have mea- 
sured the thermal expansion in Mno.vsZno.25F 2 up to the bicritical point. In 
equilibrium, the thermal expansion exhibits the critical behavior of the heat 
capacity. At low fields, for field-cooled samples they observe a sharp heat 
capacity peak which is more symmetric than at H = 0, in agreement with 
the Feo.6Zno.4F 2 results. However, at larger fields this peak broadens consid- 
erably and the phase transition is clearly destroyed. In addition, Shapira et 
al. find that (i) hysteresis effects are seen for H >/20 kOe; (ii) the peaks are 
sharper when warming, after cooling at the same H, and sharpest when 
warming after cooling at zero field. These features agree with our neutron 
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results in Mno.65Zno.35F 2. We believe, therefore, that there is no disagree- 
ment at all between the experimental neutron and heat capacity results. 
The only possible differences are in the interpretation of the measurements. 
Of course, as we stated above, the crossover of the heat capacity to a 
symmetric logarithmic peak at low fields remains to be understood. 

Before giving our overall view of the random field problem we briefly 
discuss experiments in other systems. Wong and Cable (32~ have carried out 
experiments on FecMgl_cC12 and FecC01_cC12. The former gives results 
similar to those in the diluted fluorides, especially insofar as the irre- 
versibility effects are concerned. The latter is a complicated system with 
competing anisotropies. (43~ Wong and Cable (32~ have studied a sample 
Fe0.275C00.725C12 in a magnetic field. In zero field this sample (43) exhibits 
successive Ising and 3-component Potts transitions (44) with decreasing 
temperature. The latter transition is rounded due to random field effects 
originating from random coupling terms between the longitudinal and 
transverse spin components. On application of a small field, Wong and 
Cable find that the profiles of the Ising component below T N are always 
resolution limited. However, since their resolution is four times worse than 
that used in our experiments, it is not clear how much significance one 
should assign to this latter result. The most interesting measurements in the 
above crystal are in the spin-flop phase. This should be a realization of the 
three-component Potts model in a random field. Wong and Cable (32~ 
indeed are able to see the destruction of LRO. Unfortunately, the samples 
are of too poor quality to allow the kind of detailed line-shape analysis 
possible in the fluorides. Kettler and Steiner (37) have studied the random 
field behavior in Dy(P0.92V0.os)O4. This is a 3D Ising antiferromagnet with 
the Ising anisotropy partially random in magnitude and direction. (45~ At 
H = 0 it exhibits a sharp Ising transition to LRO. When the system is 
cooled in a field, the LRO is destroyed as in our diluted fluoride experi- 
ments. Irreversibility effects are also observed. The experiments on this 
system are still in progress so that complete results including, especially, 
detailed line-shape analyses are not yet available. The initial results them- 
selves are, nevertheless, quite important since they show that the destruc- 
tion of LRO in 3D Ising magnets by random fields is not just a property of 
diluted magnets but instead is a more general feature. 

Suter et al. (46) have used high-resolution x-ray scattering techniques to 
study the Ag ordering in TiS2Ag0.33. This is believed to be a realization of 
the 3D X Y  model with sixfold anisotropy. Impurities in this system gener- 
ate site-random pinning fields. Because of the discrete nature of the 
anisotropy, Suter et al.(46) expect this system to exhibit behavior analogous 
to that of the 3D Ising model in a random field. They find that the 
low-temperature state does not have LRO but rather the profiles are 
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well-described by the Lorentzian-squared line shape, albeit with a large 
domain size. The phase transition is also rounded. 

Random field effects are important in a wide variety of other magnetic 
systems. Birgeneau and Berker (4v~ have discussed the effects of impurities 
on metamagnetic tricritical point measurements. Because such tricritical 
points involve the application of a bulk magnetic field there are then 
induced random fields acting on both the magnetization and the sublattice 
magnetization. By a careful consideration of the crossover effects, Bir- 
geneau and Berker (4v) have shown that many apparently anomalous results 
in the literature are naturally explained by random fields. Such effects may 
be important in other multicritical point experiments including, especially, 
bicritical measurements like those in MncZn 1_cF2 and GdcLa I _cA1 03 .(48) 
As we noted above, Wong et al. (43) have pointed out in random alloys with 
competing spin anisotropies such as F%Co 1 _cC12, the achievement of LRO 
in one order parameter will generate random fields on the order parameter 
through the off-diagonal coupling. This has a profound effect on the 
multicritical phase diagram. Such effects are seen in the F%C01_cC12 
experiments. As we already discussed in Section 3, in systems with compet- 
ing ferromagnetic and antiferromagnetic interactions there is a crossover 
from from ferromagnetism to spin-glass behavior. For concentrations near 
this crossover point, the ferromagnetic order vanishes at low temperatures. 
Aeppli eta/ .  (21) have modeled such systems as interpenetrating spin-glass 
and ferromagnetic networks. They have then pointed out that if the 
spin-glass network undergoes a transition at low temperatures it will set up 
quenched random fields on the ferromagnetic system. This in turn will 
cause the ferromagnet to break up into microdomains. Many of the 
features of reentrant spin-glass systems, especially the neutron scattering 
results, are simply explained using this model. 

It is clear, therefore, that random fields have profound effects on the 
properties of magnets in both two and three dimensions. It is equally clear, 
however, that we do not have a proper theoretical Understanding of these 
effects. Manifestly, irreversibility plays a dominant role. Many theories now 
predict that 3D random field Ising magnets should exhibit LRO at low 
temperatures provided that the equilibrium state is accessible. (25) As we 
have discussed in this paper, in all cases in which it is possible to carry out 
high-resolution measurements it has been found that for systems cooled in 
the presence of the random fields, the phase transition is destroyed and one 
instead freezes continuously into a "Lorentzian-squared" disordered state. 
As we have stressed in this paper, the length scale for this disordered state 
may be quite large. All of the physical realizations of the random field Ising 
model involve a combination of random fields and random interactions. It 
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is not yet certain how important this combined randomness is, although our 
prejudice is that the physics is dominated by the random field component. 
The irreversibility and long relaxation time phenomena are, however, 
clearly of profound significance. In order to make progress on the theoreti- 
cal front, these effects will have to be taken into account explicitly. For 
additional comments on the theoretical issues as well as a general review of 
the theory, the reader should see the paper by Imry (49) in this issue. 
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NOTE ADDED IN PROOF 

Since this manuscript was completed, two important developments 
have occurred in the random field Ising problem. First, Belanger et al. (3~ 
have completed their analysis of the critical scattering data in the 
Fe0.6Zn0.4F 2 system. As we noted in the text, the field-cooled behavior is 
identical to that observed previously (4J) in FexZn l_xF2 with x = 0.35 and 
0.50. Specifically, it  is found that the inverse domain size K ~ H 2 ;  further, 
the absolute magnitude seems to scale reasonably with concentration. At 
H = 2.0 T the field cooled K is of the order of 0.0002 reciprocal lattice units 
(rlu). Thus, a study of the critical behavior for 0.001 < K < 0.01 rlu is 
possible. It is found that the critical scattering is well described by Eq. (7) 
with the Lorentzian squared term dominant. According to Mukamel and 
Pytte, (24) in the critical region in Eq. (7) one expects A / K 4 ~ ( T  - 
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T s )  - ~ ( 4 - ~  and B / K 2 ~ ( T -  TN) - v .  Belanger et al. ~3~ thence find p = 
1.0 + 0.1, 7 = 1.8 + 0.2, and ~(4 - 7) = 4.0 _+ 0.4; these may  be combined  
with the birefringence result ~ = 0.00 + 0.04. The corresponding exponents 
for the 2D Ising model  are ~ = 1.0, 7 = 1.75, v ( 4 -  7) = 3.75 and a = 0. 
The agreement  clearly is very good. Thus it appears that the 3D r andom 
field Ising model  exhibits 2D Ising equilibrium critical fluctuations in spite 
of the fact that  the field cooled transition is into a domain  state. 

Stimulated by the experiments described in this review, J. Villain and, 
independently,  G. Grinstein and J. Fernandez  have proposed an interesting 
solution to this problem. R. Bruinsma and G. Aeppli have produced  a 
similar, but  not  identical, theory. They  predict that  d l = 2 in equilibrium 
thus allowing, al though not  predicting, 2D Ising-like fluctuations for the 3D 
r a n d o m  field Is ing model.  However ,  Villain finds that  for samples 
quenched to a temperature T below the phase boundary  the domains  are 
pinned at a critical radius R C = J k e T H r f 2 1 n ( t / , r )  where ~- is a microscopic 
time constant.  Grinstein and Fernandez  obtain the same result except for a 
prefactor of 2. This result holds in  both 2 and 3 dimensions. The conse- 
quent  Hrf  2 scaling for K describes the results in Rb2Co0.TMg0,3F 4, 
Co0.26Zno.74F2, and the FexZn 1 _xF2 samples to within the combined uncer- 
tainties. It  disagrees somewhat  with the H3:6+0"4 behavior  found  in 
Co0.35Zn0.65F 2. The order of magni tude  for R C turns out  to be correct for all 
of the samples. Finally, the hysteresis is sensibly explained by  this critical 
size pinning mechanism. We note that for ~--~ taken as the exchange 
frequency the domain  size changes by less than a factor  of 2 for time 
varying between one hour  and the current age of the universe. Thus the 
L R O  is destroyed on all practical time scales. These new theories are clearly 
very promising al though explicit predictions for samples cooled slowly in a 
field are required before one can be certain that the theories are correct. 
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